Polyhedrons

[]

A polyhedron is a 3D solid formed by polygons that only intersect on their edges. A regular polyhedron is formed when all of the faces are congruent and regular. At each vertex, the same number of faces intersect.

1. Cut out a string of three triangles.
 Notice that three vertices meet at point C.
2. Fold the triangles along the edges so that points Q and P meet.
3. Tape the edges together. You will have made a kind of "cup". Notice that the "opening" is another triangle.
4. Tape a $4^{\text {th }}$ triangle to close it off. This is our first regular polyhedron: a tetrahedron.
How many faces does it have? \qquad How many edges does it have? \qquad How many Vertices does it have?
5. We're going to try to do the same thing with more triangles, and later, with different shapes. Which polygons will make a cup? How many of each polygon are able to meet at one vertex? Pick one of the rows in the table \rightarrow

Regular Polygon	\# that meet at one vertex	Total of the angles around the vertex	Do they fold up to make a cup?
Triangle	3	$3 \cdot 60^{\circ}=180^{\circ}$	Yes
Triangle	4		
Triangle	5		
Triangle	6		
Triangle	7		
Square	3		
Square	4		
Square	5		
Pentagon	3		
Pentagon	4		
Hexagon	3		
Heptagon	3		

What determines if a polygon can form a regular polyhedron? \qquad and try it out!

The ones that work...

Name	Created by Polygons	Vertices	Edges	Faces
Tetrahedron	Four triangles			
Octahedron				
Icosahedron				
Cube				
Dodecahedron				

