

* use mathematical language, * use materials and tools in different ways, * discuss the problem with all members
\#1: How many different trains can be formed with total length 5?
\#2: How many different trains can be formed for other lengths?
\#3: How many trains can be formed if we only allow the size 1 and size 2 cars?

Trains can be formed by attaching cars of different length together. Here are some examples:

3 cars
Length 6

3 cars
Length 6

4 cars
Length 6

Notice that even though the first two trains use the same cars, they are in a different order, so we count them as different trains.

Cutouts:

Extensions:
\#4. How many trains with length n can be formed, if we do not care about the order of the cars?

\#5. How many trains can be made with length n, if we are limited to prime-length cars?
\#6. Limiting yourself to prime-length cars, find the first train length that requires more than two cars.

Group \#6
 Julia
 Jose
 Desiree
 Serron

Group \#1
Nicole
Eudoxie
Christina
Keiana
Julian (H)

Group \#6
Terilyn Shikiri Christy Kevin

Group \#2
Juliann (T)
Leeza
Jordan
Tasia

Group \#3
Guadalupe
Andrew
Catherine
Johnny

| Group \#4 |
| :--- | :--- |
| Viet
 Daniel
 Ashanti
 Paradise |

Group \#6

Terilyn
Shikiri
Christy
Kevin

